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Vragen n.a.v. stof vorige week of werkcollege?

Vandaag:

1. Wave packets

2. Formalisme:
Dirac notation
State vector space = Hilbert space
( Hermitian operators )

3. Particle in a box model and research




Wave packets

Velocity of wave packets
(group velocity)

and Heisenberg

Velocity of a plane wave

Voorplanting van viakke golf
qj(x,t): oF L oot ei(kx—a)z‘)
Om voortplantingssnelheid te bepalen, punt van

constante phase kx — wt volgen.
kx —owt =C

dx 0, .
— =+— = PHASE velocity
dt k

2
Maar @:_'_Q:ha):p /Zm: P _Va

ik hk  p  2m 2

2?7?




More realistic, a wave packet:

Velocity of a wave packet
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Voor dit golfpakket | Ax Ak ~2T

Kleinere AX kan alleen met grotere AK.

Kleinere AK kan alleen met grotere Ax

Komt door Fourier transform relatie voor golven:
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Volgende week Fourier tutorial
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For the case of matter waves, VAVAV/\VAVAVAVAVAV Il & 7
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the middle plane-wave- (black), XAAAAAAAN 1=t
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phase (red dot). The three plane waves . \
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Another way to describe this:

Maximum of wavepacket is a point where
many plane ways (v~ with different k
interfere constructively = They all have and
keep the same phase (Ax-wt) for realizing
this constructive interference maximum,
whatever their 4.
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Group velocity more general:

A wave packet has a maximum due to interference of
many plane waves ' kx=0t) yith amplitudes A(4).

The velocity of this maximum (group velocity) is

determined by the variation of o with respect to changes
Akin karound the average 4 = A,
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Ak = k-k,

Group velocity: depends on dispersion (o-k relation):

For Electro Magnetic wave packets (optical pulses)
in free space (no dispersion):
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For quantum waves of massive particles
(de Broglie matter waves)
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Dirac notation

Describe the state of a system as some abstract

state vector ‘ “P>

Why use this notation?

~ Compact (¥|p)= jl{f

—~ More general, abstract, / [¥)= V2

also for systems (e.g.spin)
whose state cannot be written as “P> < ‘P(x)

~ Basis (presentation) independent ‘P(x) VS W(px)

Dirac notation

State vector ‘ LI*’> “Ket"”-vector

<‘-I—’ ‘ “Bra”-vector

<‘P‘g0>, <‘P‘2‘¢>, <2> —>  Between brackets

(wlajv) =
A, A, A, ¢ . s areal
(c1 c, 03) Ay Ay Ay ||y |=D)D cic, 4, = scalar
A, Ay, Ay )ley) T number




Dirac notation

‘P‘ Q)= j‘P Inner product - as in linear algebra

= J.‘P (x )* 2 (p(x )dx Term for expectation value

(¥])=(pl) 3

« Etc., as in linear algebra,
<a‘P‘€D> =d <‘P\(ﬂ> on p. 97 (eq. 4.21 - 4.25)
|a¥ +bg) =a|¥)+b|p)

Dirac notation
Relation with previous notation ‘LP> <> LIj()c)

x“P j5 )
Basis (eigen) vector of x-basis

But also, for example,

(o) = ?5 (p,) ¥(p.)dp, = ¥(p,)

Basis (eigen) vector of p,-basis




Hilbert space

The linear vectorspace where the state vectors |¢) live.

It is the space that contains all the possible state for a system.

Say the state of some system can be completely characterizdd by
the physical property A, with associated observable A.

Then, every possible state ¥ of the system can be described as a
superposition of eigenvectors ¢, of A .

The eigenvectors ¢, of A then span the Hilbert space of this
system.
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Hermitian adjoint (N1eT ToETs, wel tentamen) yose
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Hermitian operators

P =A4|P) <« (P=(¥|4
Hermitian it A" = A
and then <\I—’ 2 gp> =<(ﬂ 2 \P>*

Hermitian operators (observables) have

‘real eigenvalues o (v)=a 0, (x)
-orthogonal eigenvectors Pu nPn

1, for n=m

<¢"‘¢m> = O :{O , for n#m -

a, ,for n=m

<¢"‘A‘¢m>:an5”’m :{O , for n#m

Particle in a box




Particle in a box: important model system.

For example, very simple model for electron trapped around nucleus.

To characterize system: First solve time-independent Schrodinger Eq.
(this system has time-independent Hamiltonian)

H:Hkin+Hput

V(x)=0,  0<x<a  This gives the Hamiltonian of a free particle for
V(x)=o0, allother x  the interval O<x<a, but with boundary conditions.

Some additional assumptions needed to find eigenstates: V) @ oo
p(x)=0 outside interval O<x<a L
9(0)=p(a)=0 continuous at x=0 and x=a

solving gives that ¢(x) can be taken real over O<x<a

See book on p. 92

Ground state has
finite energy!

Why?

Very simple model for V(r) for potential for electron in
Hydrogen atom




Samenvatting:

Formalism and notation

. Dirac notation
. State vector space = Hilbert space
. Hermitian operators

Wave packets and Heisenberg

Particle in a box

Volgende college:

Meer over wave packets en Fourier tutorial Fourier
Commutators
Some more research

Huiswerk voor H4

Studiestof:
Alles van H4
Appendix A, behalve laatste pagina

Leesstof:
geen

Oefeningen:

Theorie 1913

Thuis maken, voor het werkcollege:
41,42,43,44,45,4.11,4.12,4.13,4.14,4.16,4.25,4.29

Tijdens werkcollege, 1 opgave wordt uitgedeeld, en
4.6 (use p. 857), 4.9, 4.10 (only for <px>), 4.15,4.17,4.21, 4.22, 4.33, 4.35, 4.36

Extra voor zelf later verder oefenen: Zie webpagina voor dit vak




Some extra’'s on current
research topics:

Particle in a box

Experiments on electron in a box

VOLUME 69, NUMBER 10 PHYSICAL REVIEW LETTERS 7 SEPTEMBER 1992

Zero-Dimensional States and Single Electron Charging in Quantum Dots

A. T. Johnson,® L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, and C. J. P. M. Harmans
Faculty of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600G A Delft, The Netherlands

C. T. Foxon™

Philips Research Laboratories, Redhill, Surrey RHISHA, United Kingdom
(Received 19 May 1992)

We observe new transport effects in lateral quantum dots where zero-dimensional (0D) states and sin-
gle electron charging coexist. In linear transport we see coherent resonant tunneling, described by a
Landauer formula despite the many-body charging interaction. In the nonlinear regime, Coulomb oscil-
lations of a qunatum dot with about 25 electrons show structure due to 0D excited states as the bias volt-
age increases, and the current-voltage characteristic has a double-staircase shape.




GaAs - Al,Ga, ,As hetero structure

Zij aanzicht
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QUANTUM DOT (Boven aanzicht)




Zij aanzicht

A ————— ElekTronen

Boven aanzicht

Negative voltage on
electrodes on surface
pushes electrons away
from the area below it

2D electron sea
present where
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FIG. 3. Zero-field /-V curves at various center gate voltages
for dot 2, showing the double-staircase structure. From the bot-
tom, the center gate voltage is —920, —910, —907, and —905
mV. The curves are offset for clarity; all traces have I =0 when
V'=0. Inset: Sample 2 gate geometry. Transport is from left
to right through QPCs 1 and 2.




Gate voltage controls
the potential energy

level that corresponds M
to the botton of the
well. o A . A )
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FIG. 2. (a) Potential energy landscape (left) and Coulomb
oscillation with 0D shoulders (right) for a quantum dot with
bias voltage eV =p; —ur=1.88E. Solid lines in the dot are the
electrochemical potentials pg(N) and ps(N+1). Dashed lines
show excitations with splitting §E. The number of states avail-
able for transport, noted by the peak, changes as 0-2-1-2-0 as
V¢ varies. (b) Evolution of 0D shoulders with increasing bias
voltage in dot 2. The curves are offset for clarity. From the
bottom, the bias voltages are 100, 400, and 700 uV. The mag-
netic field is 4 T.

1 JANUARY 1998 VOL 283 SCIENCE www.sciencemag.org

Imaging Electron Wave
Functions of Quantized Energy
Levels in Carbon Nanotubes

Liesbeth C. Venema, Jeroen W. G. Wildder, Jorg W. Janssen,
Sander ]. Tans, Hinne L. J. Temminck Tuinstra,
Leo P. Kouwenhoven, Cees Dekker®

Carbon nanotubes provide a unique system for studying one-dimensional quan-
tization phenomena. Scanning tunneling microscopy was used to observe the
electronic wave functions that correspond to quantized energy levels in short
metallic carbon nanotubes, Discrete electron waves were apparent from pe-
riodic oscillations in the differential conductance as a function of the position
along the tube axis, with a period that differed from that of the atomic lattice.
Wave functions could be observed for several electron states at adjacent
discrete energies. The measured wavelengths are in good agreement with the
calculated Fermi wavelength for armchair nanotubes.
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